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TOPIC	

Many	of	the	topics	in	cognitive	science	are	controversial,	with	cognitive	scientists	themselves	
disagreeing	about	what	the	evidence	shows.		The	point	of	the	research	paper	is	to	force	you	to	dig	a	
bit	deeper	than	you	have	to	get	a	feel	for	the	nature	of	such	controversies	and	the	methods	that	are	
used	to	address	them	by	exploring	a	specific	controversy	and	attempting	to	resolve	it.		 

Since	you’ve	been	studying	cognitive	science	for	several	years,	you’ve	already	come	across	a	large	
number	of	controversies.		For	your	paper,	I	strongly	encourage	you	to	choose	a	controversy	that	
you’ve	already	encountered,	but	want	to	know	more	about.		(Think	back	to	your	past	classes.		What	
gripped	you?)		Alternatively,	you’re	also	welcome	to	choose	a	topic	from	the	following	list.		

• Is	perception	modular,	or	is	it	driven	by	expectations	and	background	knowledge?	

• Is	there	a	cheater-detection	module?			

• Is	there	a	domain-specific	face-detection	module?	

• Is	there	a	domain-specific	theory-of-mind	module?	

• Do	human	beings	really	have	picture-like	representations	in	their	heads?	

• Is	there	a	language	of	thought?	

• Is	there	an	innate	universal	grammar?	

• Does	the	language	one	speaks	influence	how	one	perceives	(or	remembers,	or	reasons)?	

• Can	evolutionary	psychology	be	fruitfully	applied	to	study	the	human	mind?		Or	is	it	doomed	to	
trafficking	in	unverifiable	just-so	stories?	

• Are	there	innate	differences	in	mate	preferences	between	the	sexes	that	are	driven	by	
evolution?	

• Is	the	mind	massively	modular?	

• Can	connectionist	networks	explain	the	systematicity	of	thought?			

• Are	probabilistic	models	of	cognition	superior	to	connectionist	models?	

• Can	deep	learning	explain	general	intelligence?	

• Are	behaviorist	accounts	of	learning	(e.g.	instrumental	conditioning)	true	of	animals	such	as	
rats	and	pigeons?	

• Are	there	two	separate	visual	systems?		If	so,	how	are	they	best	characterized?	

• How	much	plasticity	attaches	to	the	brain?		Do	one’s	genes	determine	which	part	of	the	brain	is	
used	for	vision,	audition,	motor	control,	etc.?		Or	is	neural	organization	a	result	of	experience?	

• What	is	(are)	the	neural	correlate(s)	of	consciousness?			

• Is	altruism	compatible	with	selfish	genes?			

• Are	people	altruistic	(sometimes,	often,	never)?	
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• Is	morality	primarily	the	product	of	emotions	or	reason?			

• Are	emotions	natural	kinds?	

• Do	we	have	good	introspective	knowledge	of	our	mental	states?	

• Has	Molyneux’s	question	been	answered	empirically?	

• What	does	it	mean	to	say	that	something	is	innate?		Are	objects	(numbers,	agents)	represented	
innately?	

• Is	the	frame	problem	an	insurmountable	obstacle	for	artificial	intelligence?			

• Is	the	mind	confined	to	the	brain,	or	does	it	extend	out	into	the	world?	

• Is	the	attribution	of	mental	states	to	others	guided	by	a	theory	or	simulation?			

• Do	infants	attribute	beliefs	and	other	mental	states	to	agents?	

• Do	chimpanzees	attribute	beliefs	and	other	mental	states	to	agents?			

• Is	there	compelling	evidence	for	ESP?	

• Is	there	a	human	instinct	for	warmongering?			

• Are	integer	concepts	learned	through	bootstrapping?	

• Is	perception	cognitively	penetrable?	

• Is	attention	necessary	for	consciousness?	

• Is	attention	sufficient	for	consciousness?	

• Does	consciousness	overflow	access	to	consciousness?	

• Does	attention	alter	appearance?	

• Why	do	children	engage	in	pretend	play?		

• Are	there	different	learning	styles?	For	example,	are	some	people	“visual	learners”	and	others	
“aural	learners?”		

• Does	bilingualism	bestow	cognitive	advantages	(apart	from	the	advantage	of	being	able	to	
speak	more	than	one	language)?		

• Do	nonhuman	animals	use	cognitive	maps?		

• Is	mathematical	ability	determined	by	the	acuity	of	the	approximate	number	system?	

• What	explains	sound	symbolism	(e.g.	the	Bouba-Kiki	effect)?		

• What	is	the	function	of	dreams?	

• What	are	colors?	Are	they	in	the	mind	or	in	the	world?	

• What	is	X	(where	X	=	a	specific	phenomenon	such	as	attention,	consciousness,	perception,	
intentionality,	innateness,	intelligence,	learning,	etc.)?			

	

Many	of	the	above	topics	are	quite	general.		When	you	write	your	paper,	you	should	narrow	them	
down.		For	example,	rather	than	considering	whether	language	affects	perception,	you	might	write	
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a	paper	on	whether	the	language	one	speaks	affects	the	colors	one	perceives.		All	things	equal,	the	
more	specific	your	thesis,	the	easier	it	will	be	to	research	and	write	effectively.			

Whatever	topic	you	choose,	it	should	have	an	empirical	literature	associated	with	it	and	be	
controversial	enough	that	there	are	researchers	who	have	defended	each	side	of	the	issue	in	print.			

If	you	choose	the	last	topic	(“What	is	X?”),	your	paper	will	likely	involve	more	philosophical	analysis	
than	if	you	choose	many	of	the	other	topics.		It	will	also	be	less	straightforwardly	addressed	by	the	
empirical	literature.		Nevertheless,	you	should	still	try	to	engage	the	empirical	literature	as	you	
answer	the	question.			

If	you’re	feeling	lost,	or	have	questions,	I	can	help	you.		Come	talk	to	me.		Choosing	a	good	topic	is	
half	the	battle.	

	

RESEARCH		

As	you	research	your	papers,	you	should	observe	the	following	guidelines:	

• Read	and	cite	at	least	one	position	paper	that	comes	down	on	each	side	of	the	controversy	you	
are	considering.		Your	position	papers	should	be	general	overviews	or	review	pieces.		(That	
means	that	they	should	summarize	the	existing	literature,	and	not	primarily	be	reporting	new	
studies.)		For	example,	if	you	write	on	whether	language	affects	color	perception,	you	should	
find	at	least	two	position	papers:	one	by	someone	who	says	that	it	does,	and	one	by	someone	
who	says	that	it	doesn’t.		Review	articles	from	major	academic	journals	are	best	for	this	
purpose.			

• So	far	as	possible,	ground	your	discussion	in	empirical	evidence	(experiments,	surveys,	field	
studies,	etc.).		You	should	use	logic	and	general	arguments	to	structure	your	discussion,	but	
shouldn’t	rely	on	them	alone.			

• It	is	often	a	good	idea	to	start	with	a	textbook	to	orient	your	search,	but	most	of	your	material	
should	derive	from	elsewhere.		

• You	want	the	latest	evidence	on	your	topic.		The	majority	of	your	sources	should	thus	be	
published	within	the	last	twenty	years.	

• Your	sources	should	span	at	least	two	disciplines	that	are	associated	with	cognitive	science—
e.g.,	philosophy	and	psychology;	linguistics	and	neuroscience;	etc.			

• Quality	is	more	important	than	quantity,	so	only	use	peer-reviewed	sources.		To	be	safe,	stick	to	
academic	journals,	books,	and	edited	volumes	written	by	people	affiliated	with	universities.		
Along	these	lines:	

o Avoid	articles	from	newspapers	and	non-academic	magazines	(The	New	York	Times,	
Newsweek,	Time,	etc.).		

o Avoid	citing	web-based	sources	unless	you’re	certain	that	they’re	peer-reviewed.		You	
can	make	use	of	other	resources	from	the	web	(e.g.	Wikipedia),	but	only	as	a	way	of	
helping	you	find	peer-reviewed	sources.			

• Consult	your	friendly	York	Library	staff	if	you	need	help	finding	appropriate	sources,	or	have	
questions	about	whether	a	given	source	is	peer	reviewed.	
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CITATIONS		

Provide	citations	for	all	facts	that	aren’t	common	knowledge	(e.g.,	“People	have	brains”).			

Use	the	American	Psychological	Association	style	to	format	your	citations	and	references.		The	basic	
idea	is	to	enclose	the	author	and	date	of	a	publication	in	parentheses	when	you	refer	to	it.		For	
example:	

The	visual	system	can	be	explained	at	three	different	levels:	computational,	algorithmic,	and	
implementational	(Marr	1982).			

Or:	
According	to	Marr	(1982),	the	visual	system	can	be	explained	at	three	different	levels:	computational,	
algorithmic,	and	implementational.			

Or,	if	you	quote	from	the	publication	instead	of	paraphrasing,	you	should	include	the	page	number:	
According	to	Marr	(1982,	p.	27),	“it	is	the	top	level,	the	level	of	computational	theory,	which	is	
critically	important	from	an	information-processing	point	of	view.”			

Your	reference	section	at	the	end	of	the	paper	should	then	list	the	details	of	the	publications	you	
cite	in	alphabetical	order.		(Only	list	references	that	you	actually	cite.		So	don’t	list	a	reference	just	
because	you	consulted	it.)		For	example,	your	entry	for	Marr	would	appear	as	follows:	

Marr,	D.	(1982).		Vision:	A	computational	investigation	into	the	human	representation	and	
processing	of	visual	information.		New	York:	W.H.	Freeman	and	Company			

A	simplified	explanation	of	APA	style	(sufficient	for	our	purposes)	is	available	here:	
http://library.williams.edu/citing/styles/apa.php.		It	will	tell	you	how	to	format	your	reference	
section	for	journal	articles,	chapters	in	edited	collections,	etc.			

	

FORMAT	

Apart	from	using	APA	style	for	your	citations	and	reference	section,	your	papers	should:	

• Be	double-spaced,	in	a	normal	sized	font,	with	at	least	1”	margins	on	all	sides.			

• Begin	with	an	abstract	of	100-200	words	that	summarizes	your	topic	and	conclusions.			

• Include	few	if	any	footnotes.		Never	use	footnotes	for	citations.		

• It	is	best	to	avoid	quotations	unless	the	exact	wording	is	important—for	example,	because	
you’re	criticizing	someone	for	choosing	one	word	rather	than	another.	If	you	do	include	a	
quotation,	you	should	put	it	in	the	main	flow	of	the	text	if	it	is	less	than	40	words,	and	set	it	off	
from	the	main	text	in	an	indented	paragraph	without	quotation	marks	if	it	is	less	than	40	words.			

IMPORTANT:		To	avoid	plagiarism,	be	sure	to:	

• Cite	any	ideas	that	are	not	your	own.			

• Enclose	any	words	in	quotation	marks	that	you	borrow	from	someone	else.			

• Not	hand	in	work	for	which	you	have	already	received	credit	in	another	class.	

Anyone	who	is	caught	plagiarizing	will	fail	the	course	and	be	reported	to	the	University	
authorities.		Information	on	York’s	policy	regarding	academic	integrity	can	be	found	at:	
http://www.yorku.ca/secretariat/policies/. 
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• Divide	your	paper	into	sections	for	organization,	and	use	two	or	three	levels	of	headings	to	
demarcate	those	sections	as	follows:		

A	Capitalized	Bold	Heading	

A	Capitalized	Italicized	Heading	

An	italicized	run-in	heading.		This	sub-heading	runs	into	the	first	sentence	in	the	paragraph.		You	
may	or	may	not	find	it	helpful	to	use	this	last	type	of	heading.	

	

ORGANIZATION		

Start	by	describing	the	question	you	are	considering	and	the	various	positions	that	you	are	
evaluating.		Be	sure	to	explain	them	so	that	someone	with	no	background	in	the	subject	can	
understand	them.		At	the	same	time,	make	sure	your	characterization	is	fair,	so	that	a	proponent	of	
each	position	would	recognize	and	endorse	it.			

Now,	for	each	position	that	you	discuss,	explain	why	someone	might	find	it	attractive.		What	are	the	
major	arguments	for	the	position?		What	empirical	evidence	has	been	taken	to	support	it?		As	you	
describe	the	evidence	for	each	position,	it	is	not	enough	to	report	the	results	(e.g.,	“the	authors	
found	that	perception	is	influenced	by	language”).		You	need	to	explain	the	methods	and	logic	of	
each	study.		Each	study	should	take	a	lot	of	space	to	explain.		It	is	almost	always	better	to	discuss	
fewer	studies	that	are	fully	explained	than	to	discuss	many	studies	that	are	only	partially	explained.	
Although	there	are	no	hard	and	fast	rules	about	how	many	studies	you	should	discuss,	an	excellent	
paper	of	the	expected	length	might	discuss	about	three	studies	per	position	(or	six	total	studies).		

Once	you	have	described	the	arguments	and	evidence,	critically	evaluate	them.		If	the	empirical	
evidence	is	based	on	studies,	do	those	studies	have	any	significant	flaws?		It	is	not	enough	here	to	
point	out	minor	weaknesses	(e.g.,	“There	were	only	n	subjects”)	or	non-specific	possibilities	(“The	
experimenters	might	have	been	biased”).		You	need	to	show	how	someone	who	rejects	the	position	
can	explain	the	findings.		Why	might	someone	have	predicted	these	findings	even	if	they	didn’t	
accept	the	position?	

Lastly,	draw	a	conclusion	about	what	the	evidence	and	arguments	on	balance	show.		Be	sure	to	
explain	why	you	take	the	evidence	and	arguments	to	lead	to	this	conclusion.		Here	are	your	options:	

• One	position	is	right	and	the	other	is	wrong.		

• Both	positions	capture	part	of	the	truth.		They	explain	different	parts	of	the	phenomenon,	or	
aren’t	really	in	conflict	with	one	another	once	properly	stated.			

• Both	positions	are	wrong.		We	need	to	find	a	third	way	that	no	one	has	thought	of	yet.		If	this	
is	what	you	decide,	try	to	describe	that	third	way	as	clearly	as	you	can.			

• We	can’t	tell	which	position	is	right.		The	evidence	isn’t	sufficient,	or	the	positions	aren’t	
clear	enough.		If	you	choose	this	conclusion,	try	to	think	of	an	experiment	that	would	settle	
the	matter.		(A	feasible	experiment	is	best,	but	even	an	unfeasible	one	would	be	helpful	to	
show	that	you	understand	what’s	at	issue.)			

Approach	your	job	as	a	scientist	seeking	the	truth,	not	a	lawyer	looking	to	win	an	argument.		Be	fair	
to	all	sides,	and	see	where	the	evidence	leads	you.			
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FURTHER	WRITING	ADVICE	

Once	you	find	articles	and	book	on	your	topic	(your	“sources”),	you	should	read	them	and	take	
notes.	The	notes	should	summarize	the	main	points	in	your	own	words.	They	shouldn’t	involve	
copying	and	pasting	from	your	sources.	Then	when	you	start	writing,	you	should	put	away	your	
sources	and	rely	solely	on	your	notes.	This	will	make	sure	that	you	put	things	in	your	own	words	
and	avoid	plagiarizing	your	sources.		

If	you	find	it	difficult	to	write	clearly	and	grammatically,	you	may	want	to	take	a	draft	of	your	paper	
to	the	York	Writing	Centre:	http://writing-centre.writ.laps.yorku.ca/services/one-to-one-writing-
support/.	In	fact,	this	is	really	a	great	resource	for	anyone	who	is	looking	for	extra	feedback.	

	

DEADLINES		

9am	September	30:	a	one	to	two-page,	double-spaced	preview	of	your	paper	that	clearly	states	
your	topic	and	summarizes	the	main	positions	you	will	be	considering.		You	should	list	at	least	five	
references,	two	of	which	should	be	your	position	papers,	which	should	be	clearly	identified	with	an	
asterisk.			

9am	November	4:	a	three	to	five-page,	double-spaced	preview	of	your	paper	that	clearly	states	
your	topic,	summarize	the	main	positions	you	will	be	considering,	and	the	main	arguments	and	
pieces	of	evidence	you	will	appeal	to	in	support	of	your	conclusion	(with	citations	to	the	studies	
where	the	evidence	is	to	be	found).		For	each	position,	be	sure	to	explain	one	or	two	studies	in	some	
detail,	taking	care	to	explain	the	logic	and	methods	behind	the	study.		Your	preview	should	include	
at	least	two	levels	of	headings,	as	described	above	in	the	section	titled	FORMAT,	and	should	make	
the	structure	of	your	paper	perspicuous.		(You	can	think	of	it	as	an	outline,	but	with	complete	
sentences	except	for	the	headings.)		Lastly,	please	include	an	annotated	bibliography	with	at	least	
eight	references.		The	annotated	bibliography	can	be	single-spaced	and	does	not	count	as	part	of	
your	page	limit.		For	information	on	how	to	prepare	an	annotated	bibliography,	see	
http://olinuris.library.cornell.edu/ref/research/skill28.htm.	

9am	January	13:	a	4,000	to	6,000-word	research	paper	citing	at	least	ten	sources.	

9am	March	2:	a	revision	of	your	research	paper	(around	6,000	to	8,000	words)	citing	at	least	
twelve	sources.			
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ABSTRACT 

This paper will explore whether it is practically possible to realize artificial morality. First, I will articulate 

the prevailing positions on these difficulties and subsequently express why one of the established 

proposals, the evolutionary paradigm, ought to be considered the optimal substratum upon which to 

build a moral architecture. This is best conceptualized through the development of an independent 

moral algorithm that may be implemented in a diverse range of automata, effectively converting these 

machines into artificial moral agents. New innovations in deep learning may facilitate such a project in 

ways that have not previously been possible so as to belay many of the practical problems raised as 

objections to artificial, moral decision-making. I will outline a rudimentary springboard for the 

development of such an algorithm and subsequently discuss how, generated in the ways I will describe, 

this algorithm may tackle some of the preeminent roadblocks pertinent to the development of moral 

algorithms. 

INTRODUCTION 

The question of morality is unique in comparison to discussions of other forms of skill 

automation, which tend to focus on when, rather than if, the technology reaches its viable form. 

Artificial morality, on the other hand, is hampered by dissention about whether it is even possible to 

digitize this ‘uniquely human’ ability. Speculation of this kind is a distraction from the necessary 

conversations that must be had as we stand on the precipice before artificial intelligence that may soon 

surpass our own. Machines already exist that guide ethical decision-making, and many more maintain 

tremendous impacts on moral outcomes. Any increase in the ethical competence of such machines that 

results in the overall reduction of harm and increase in wellbeing is, almost by definition, a favourable 

outcome. As such, this paper will assume that an algorithm facilitating moral decision-making is, to some 

degree, advantageous. Further, since the machinery for morality already exists (even if only in humans), 

there must be a mechanism by which to replicate it. Thus, this paper also assumes that the synthesis of 



a moral system is, at the very least, theoretically possible. With these considerations undergirding the 

endeavour, I shall focus this work on the barriers preventing the functional development of a working 

moral algorithm and present some potential solutions for consideration. 

Cognitive ethicist Colin Allen has highlighted many of the main practical impediments currently 

hampering the development of artificial moral (ro)bots. He raises three major roadblocks: discordance in 

views of morality, the difficulty of incentivization to moral action, and the role and implementation of 

biologically realized mechanisms like emotions and empathy (Allen, Varner, & Zinser, 2000; Wallach & 

Allen, 2009). I will term these the problem of subjective morality, the problem of incentivization and the 

problem of biological parallels, respectively. Even if the theoretical possibility of developing artificial 

morality exists, these barriers will first need to be surmounted in order to reify it. 

The Problem of Subjective Morality: Hume’s observation, that one cannot get an ought from an is, is a 

major difficulty plaguing the development of an objective moral framework. Thus far, it appears 

infeasible to empirically derive moral principles; developers of such systems must be content with 

subjective moral frameworks based on inferences about morality. This, however, forces the cherry 

picking of foundational premises upon which to base a moral system, and there is significant 

disagreement about what these should look like. Artificial intelligence developers that wish to generate 

moral machines, therefore, must decide on a foundational set of premises about morality before they 

begin training. Allen describes the three approaches developers typically use in order to frame these 

foundational premises: virtue approaches, associative learning approaches, and 

evolutionary/sociobiological approaches (Allen, Varner, & Zinser, 2000). 

 Virtue approaches use a healthy mix of top-down and bottom-up methods to program 

computers to operate under deontological principles in much the same way as humans. The idea behind 

virtue approaches is that, if the computer is coded with moral rules that set a foundation for ‘morally 



good’ decisions, then these rules will effect morally good outcomes. Allen notes that this approach 

suffers from many of the same difficulties of any deontological system, like dealing with competing 

virtues and establishing what ‘morally good’ (or any other principle, such as honesty or integrity) should 

mean (Allen, Varner, & Zinser, 2000). There is an added difficulty when using top-down programming 

methods in this way. Allen notes that the list of virtues to be programmed into a machine is likely unable 

to cover all of the scenarios that a machine may find itself in and, for this reason,  approaches more 

reliant on bottom-up learning may be more appropriate (Allen, Varner, & Zinser, 2000).  

 Associative learning approaches are those that rely on supervised learning. Moral quandaries 

can be presented to the machine, which subsequently decides whether the sample is moral or not. The 

problem with this, as identified by Allen, is that moral responses do not lend well to binary answers. The 

learning of these principles is often couched in the rationale behind them that can both be identified 

and articulated (Allen, Varner, & Zinser, 2000). If, for example, a person is asked, ‘is it moral to steal a 

loaf of bread to feed one’s starving family?’, the response of ‘yes’ or ‘no’ is insufficient. In fact, there 

would be no way to demonstrate that the responses are not a result of mere chance. It is in the 

justifications provided, the ‘yes, because…’ or ‘no, because…’, that demonstrate moral understanding. 

People may agree with either ‘yes’ or ‘no’ depending on the rationale following the ‘because’. 

 Associative learning approaches are a problem for coders because they require the integration 

of so many systems. The amount of background information required for justification is extremely high. 

For example, one will need to know the relative value of bread, as the response to the question may 

change if the question were rephrased as ‘is it moral to steal a crate of sirloin steaks to feed one’s 

starving family?’. As the system requires more and more information, the domain in which it operates 

becomes increasingly broad and thus, fewer resources are dedicated to answering specific questions. 

Therefore, these machines are unlikely to be sufficiently complex so as to pass any kind of moral Turing 

test. 



Evolutionary/Sociobiological Approaches aim to simulate evolutionary trajectories in order to 

establish morality from the ground up. This will be explained in greater detail in subsequent sections, 

but it is worth noting some of the associated difficulties. As Allen points out, they will suffer from similar 

problems encountered in the associative learning approaches (Allen, Varner, & Zinser, 2000). The 

difficulty is less pronounced, however, due to the simplicity with which they begin (they must effectively 

learn everything). These models can learn the necessary background knowledge for a small number of 

scenarios, but this presents the problem of scaling them to become broader in their applicability. My 

hope is to explain why this problem may be alleviated by training the moral algorithm in a domain 

specific way and subsequently instantiating it into other machines such that it can operate 

autonomously while incorporating the training of its host machine. 

The Problem of Incentivization: This ties into one of the problems that was outlined with respect to 

associated learning approaches: the binary nature of training in pass/fail conditions. Moral questions do 

not fall into categories with delineable borders but rather, fall upon a spectrum of more or less moral 

outputs. As Allen argues, humans have a categorization method that places actions on a spectrum: 

motivation to avoid punishment or seek reward correspond to being more or less desirable outcomes. 

Approval and disapproval are key abstractions based on this motivational system that facilitate moral 

learning. Humans are, by nature, social creatures and as such, degrees of approval and disapproval are 

often sufficiently salient to guide moral learning and override contravening goal-states. Machines have 

no access to social emotions, and thus, moral calculations will likely never reach the same priority levels 

as the goal-states for which the machine was designed. 

The Problem of Biological Parallels: Emotions are universal communication systems, transcending 

language, culture and ideology. The presence of positively or negatively valanced emotions within 

others can also be experienced within oneself, bridging the gap between the actions one takes and the 

effects that it has on others. As mentioned above, one element of this might be approval or disapproval, 



but it is not limited to these states. The capacity for empathy allows for more nuanced updates to 

weighted connections to facilitate social learning. Since morality is a social paradigm, it is necessary to 

have a universal reinforcement and feedback mechanism for learning the rules within this context. We 

more readily empathize with other humans than we do with rats, and we empathize with rats more 

readily than we do with staplers. Our moral rules tend to reflect the spectrum of this universal 

emotional language. If machines have no functional equivalent to emotions, it is unclear how they 

would both act, and be acted upon, within the confines of a human moral system that uses emotional 

stimuli as the feedback for learning. The design of computers renders it extremely unlikely that any 

biological parallel for emotions is possible, with the sole exception replacing of every organic cell in a 

human with a mechanized equivalent. While this may be at some point possible, it is highly unlikely that 

this will be the form of the most common artificial intelligence systems with whom we regularly interact.  

ESTABLISHING AN ARTIFICIAL MORAL FRAMEWORK 

Top-Down vs. Bottom-Up Moral Frameworks: In his book, Allen raises the question as to whether top-

down or bottom-up approaches are the appropriate choice of framework (Wallach & Allen, 2009). 

Broadly speaking, top-down approaches are those that migrate from the larger, broader, and more 

general towards the smaller, narrower and more specific. Bottom-up approaches, on the other hand,  

tend to move in the reverse direction, starting from smaller, narrower and more specific and moving 

towards the increasingly large, broad and more general. With respect to the brain, bottom-up generally 

refers to the workings of a smaller biological mechanism that goes on to influence larger brain systems 

or networks. Neuroleptics, for example, contain molecules like haloperidol which exert their effects on 

both dopamine (typically D2) and serotonin (5-HT2) receptors in the brain. By antagonizing these 

receptors, most of the neurons with these receptors will fire differently, which then propagates forward, 

causing changes in large scale dopaminergic pathways, which in turn, causes changes in all of the neural 



systems that have a causal relationship with dopaminergic projections. The change in these large-scale 

systems is the reason the drug then has an effect on behaviour and cognition as a whole.  

Top-down mechanisms, on the other hand, capitalize on these extensively interdependent 

systems which feed-back to make slight alterations to increasingly smaller systems until even molecular 

properties can be affected. The brain has several identifiable large-scale connection networks that, 

while related, fulfill different roles. The default mode network is one such example and among its many 

functions is the facilitation of the interconnectivity between regions involved in the understanding of 

others (or theory of mind) (Li, Mai, & Liu, 2014). When the many brain regions associated with this 

network converge, and perceive a potential social threat, information is passed to the amygdalae, which 

in turn converge their signals on the hypothalamus. The hypothalamus then instructs a smaller system 

still, the pituitary, to create the adrenocorticotropic hormone molecule. In this way, even our most 

complex cognitive constructions can lead to changes in molecular signaling. 

The ‘cognitive economy’ describes the neurocognitive concessions that must be made between 

accuracy and storage, and speed and efficiency of resource use (Rosch, 1999); top-down mechanisms of 

cognition are extremely valuable for speed and efficiency, but remarkably poor in accuracy and 

information registration. Hallucinations and delusions, erroneous beliefs and cognitive distortions are all 

common examples of top-down processing on insufficient or misrepresented data (Aleman, Böcker, 

Hijman, Haan, & Kahn, 2003; Campbell, 2001; Kahneman, 2011). Advances in brain imaging technology 

and studies on split-brain patients have yielded evidence as to why this may be; top-down processes 

appear to use heuristics to fill in knowledge gaps with inferences that may or may not be correct. Split-

brain patients are those who, often due to surgery or trauma, suffer from interhemispheric 

disconnectivity. Some of the most exciting experiments conducted by on these patients have involved 

the projection of commands to the right hemisphere and the subsequent justifications confabulated by 

the left when asked why they are performing these actions. When, for example, patients had the 



commands ‘laugh’, ‘rub’ and ‘walk’ projected onto only the left visual field, so that it would be 

interpreted only by the right hemisphere, they performed each of the actions without hesitation. When 

asked why they were doing so, the responses were ‘Haha…you guys are just too much,’ ‘An itch’ and ‘Oh 

I need to get a drink,’ respectively (Hirstein, 2005, p. 154). The causal reasons for performing the actions 

were completely divorced from their cognitively constructed reasons. This is lending increasing 

credibility to the social intuitionist hypothesis that top-down reasoning is simply confabulation to justify 

decisions rendered before reaching consciousness (Haidt, 1995). In this view, all rationalization is 

essentially confabulation, and rationalization is not limited to slit-brain patients. Indeed, tens of 

thousands of studies demonstrate the effects of unconscious stimuli on moral decision-making. These 

range from evidence of interoceptive signals affecting self-control (Gailliot, et al., 2007) to vacillating 

political perspectives in the presence of aversive stimuli (Adams, Stewart, & Blanchar, 2014). Yet, in 

spite of empirical evidence to the contrary, people still readily stand by what appear to be nothing more 

than confabulated justifications. Thus, top-down attempts at accessing principles of morality are likely 

misguided for an accurate picture of decision-making in general, and almost certainly so for each 

individual decision within the ethical realm.  

Until recently, top-down programming methods were the only viable methods available. But 

new deep learning techniques have revolutionized the way in which machines can be trained, allowing 

bottom-up styles of data collection to yield novel outcomes in the absence of top-down systems. 

Moreover, modern machines have the distinct advantage of unparalleled processing and storage 

capacities when compared to human brains. Couple this with a lack of colossal metabolic costs and a 

prime candidate for bottom-up learning that can achieve accuracy levels far exceeding human 

competence emerges. The main criticism long levelled at bottom-up systems was the inability to use 

abstract constructions, but recent advancements in deep learning technologies have put such objections 



to rest, rendering doubts about the superiority of bottom-up computational systems untenable. The 

momentous achievement of AlphaGo Zero highlights why this is so. 

The game of Go requires a remarkable degree of abstract, strategic forethought, more so even 

than chess. In 1997, the world was awestruck when Deep Blue defeated Garry Kasparov in a six-game 

tournament to become the number one chess player in the world. Chess, unlike Go, has very strict rules 

with respect to how each piece can move in addition to a more constrained victory condition. The 

number of possible moves is readily calculable, albeit extremely large, but with sufficient processing 

power, Deep Blue was able to use a “brute-force” method: it speedily processed every possible move 

each turn and systematically eliminated those that would lead to less statistically viable actions than the 

one calculated before it. Though an impressive display of progress made in computational speed and 

processing power, Deep Blue was not considered intelligent; it was not able to harness the power of 

learned abstractions. Brute-force methods have been unsatisfactory for Go because the sheer number 

of available decision options and victory configurations is too great. AlphaGo instead trained with 

machine learning, allowing it to home in on the most effective human strategies. In 2016, it managed to 

beat one of the world’s best professional players in 4 out of 5 games. Though impressive, it was not long 

before AlphaGo was dwarfed by its successor, AlphaGo Zero. In just 3 days, AlphaGo Zero managed to 

defeat its predecessor 100 games to 0. The major change in its learning software was conversion into a 

purely bottom-up model, that was “no longer constrained by the limits of human knowledge,” (Knapton, 

2017). It trained exclusively on games against itself, building a framework for ‘better’ and ‘worse’ moves 

through trial and error at remarkable speed. This style of machine learning works so well because it is 

both domain specific and the success/failure conditions are clear. Newer versions of AlphaGo have 

mastered other games, like chess, and the world’s grandmasters have taken notice of the novel 

strategies it executes. Kasparov himself discussed how the new, highly aggressive styles of play are 

surprising to him and that studying computer strategy is making him play better chess (Kasparov, 2019). 



It is also worth mentioning, to address the problem posed by Allen, that even if one were able to 

put aside considerations of efficacy and independence for a system of morality, there is still the problem 

of subjective morality to contend with. Any program developed by utilitarians will be anathema to 

deontologists. Religious denominations will require their own software. American cars prioritizing driver 

safety will face scorn in Japan, and Japanese cars prioritizing pedestrians will collect dust in America. 

Morality is culturally contextual, but it is also individual. The only aspect of morality common to all 

humans is the hardware upon which it took root. This hardware was formed by a bottom-up process 

over evolutionary time, which subsequently provided the flexibility for learning different, contextually 

relevant software updates.  

The idea that humans have only moral hardware may initially seem counterintuitive because 

there are, at the very least, some moral principles we view as universal. After all, regardless of one’s 

moral inclinations, all humans can agree that torturing children is wrong, right? What then do we make 

of the dozens of cultures who engaged in such practices? Moreover, what reason do we have to believe 

that if we placed an infant born today in such a society (assuming they made it to adulthood) they would 

not share the conviction that this practice was a morally acceptable? Moral convictions are based 

around beliefs, and beliefs need not be correct in order to make moral judgements. Suppose a belief 

system dictates that:  

a. The tears of sacrificial children are necessary to appease the god Tlaloc 

b. If Tlaloc is not appeased, then no rain will come to the crops 

c. If no rain comes to the crops, every person will slowly starve to death 

If all of these premises were true, then the practice of ripping the fingernails off of a child so as to make 

them cry as many tears as possible before being sacrificed is morally defensible. If you heard that a 

person’s profession included ripping the fingernails off of children in order to make them cry, you may 



speculate such an individual to be amoral; the person is in possession of no moral principles. If 

presented with the belief systems that they hold, you are likely instead to consider them to be immoral; 

they are in possession of incorrect moral principles. The bottom-up generation of principles based on 

premises (beliefs) is likely one of the necessary criteria for recognizing a moral system, even if the beliefs 

themselves are not universal. 

Evolution’s Solution: In order to address the issues of relevant background knowledge inherent in the 

problem of subjectivity, there must be a kind of selection mechanism that promotes the encoding of 

some information at the cost of others. Hybrid neural networks tend to use top-down systems to fulfill 

this role. The bottom-up elements flow based on the established framework for decision-making coded 

by the creator of the network. As argued above, however, the less top-down intervention necessary, the 

more independently effective the system becomes. Thus, it seems reasonable that a single value 

minmax approach is appropriate. AlphaGo Zero, for example, used this approach with criteria of 

efficaciousness established by wins and losses. In fact, one of nature’s best selection mechanisms, 

natural selection, follows a similar minmax evaluation of efficaciousness, fitness, established by 

reproductive success or failure. The allure of natural selection-style mechanisms is that they are based 

purely on what actually works and are therefore resistant to the propensity for error inevitable in any 

top-down system. To quote Orgel’s second law, “evolution is cleverer than you are”.  

Using natural selection-style mechanisms to train algorithms seems fitting for modelling human 

traits. After all, we evolved through this system, so it makes sense to use such criteria in an attempt to 

code human behaviours like morality. This is precisely the kind of work that began in the mid-1900’s 

with genetic algorithms (GAs). GAs are not simply limited to genetics as their name might suggest, 

rather, they are algorithms that aim to capitalize on the principles of selection to optimize many kinds of 

systems from modelling ecological resource flow to developing better bidding strategies in economic 



markets (Mitchell & Forrest, 1994). The most simplistic version of a GA looks something like the 

following (Mitchell & Forrest, 1994): 

1. There is a generation of randomly selected components. 

2. Each component’s fitness score is evaluated. 

3. Genetic modifiers apply crossover effects and various forms of mutation resulting in a new 

population. 

4. The process is repeated from step 2. 

The benefit is that it can realize rapid improvements with a number of variables based solely on efficacy. 

Allen discusses the beneficial outcomes of GAs but notes that attempts to generate ethical frameworks 

have been unsuccessful (Wallach & Allen, 2009). Complexity required is a factor, but as computing 

power increases, so too does this problem decline. The other major difficulty is one technology alone 

cannot overcome: a lack of control over the selection of variables and whether they are ethically 

appropriate. 

Suppose, for example, an algorithm responsible for allocating organ transplants determines that 

statistically, one ethnicity has a mortality rate 6.7% higher than others, and as a result, denies 

transplants based on this variable. If a human candidly made such decisions, he would likely be 

considered unethical and perhaps even racist. Bias poses a problem to ethics, whether human or digital, 

but it seems that evolution has equipped humans with an override to purely Bayesian threat detection: 

the prospect of reciprocal cooperation. Many studies have now demonstrated what military officials and 

sports coaches have long anecdotally reported: the induction of cooperation overrides existing 

prejudices and draws new ingroup lines that engender favourable attitudes towards potential partners 

(Gaertner & Dovidio, 2000; Tajfel & Turner, 2004). A moral system that is based cooperation as its only 

foundational principle necessarily construes any potentially cooperative participant as a member of its 



‘in-group’. Equipping bottom-up genetic algorithms witch such a propensity may solve the quandary 

posed by bias in genetic algorithms for morality. 

Reciprocal Altruism Heuristic: Moral systems are the top-down products of bottom-up mechanisms for 

cooperative behaviour; without any element of cooperative or reciprocal arrangement, rules become 

morally vacuous. Therefore, in an effort to uncover the evolutionary underpinnings of morality, in 

addition to tempering the effects of bias, it makes sense to begin with the evolution of cooperation. In 

1980, Axelrod solicited, from interdisciplinary game theorist researchers around the world, strategies to 

be pitted against each other in the Prisoner’s Dilemma scenario. Two versions of this tournament were 

held. The first was limited to 200 rounds, but the second, in an effort to better match the uncertainties 

in organic cooperative behaviour, left the number of rounds unknown (Axelrod & Hamilton, 1981). In 

both versions of the tournament, a strategy submitted by Anatol Rapoport emerged victorious: TIT FOR 

TAT (Axelrod & Hamilton, 1981). The strategy was fairly simple: it opened with a cooperative move, and 

directly matched whichever move its opponent made in the subsequent round. 

 Axelrod published his findings in a landmark paper, The Evolution of Cooperation, with 

evolutionary biologist William D. Hamilton, which discusses the reasons TIT FOR TAT was so successful. 

The calculations suggested this as the likely solution to the thorny problem of cooperation in a “selfish” 

system of Darwinian selection (Axelrod & Hamilton, 1981). Operating under such a strategy would 

provide organisms a disproportionate advantage in meeting survival and reproductive needs, provided 

that the organisms had a high likelihood of repeated encounters and some mechanism by which to 

individualize and punish defectors should they be reencountered. The better organisms fit such criteria, 

the more cooperative stable strategies become apparent (Axelrod & Hamilton, 1981). Subsequently, as 

societies become more complex, cooperation and defection behaviour become codified in both legal 

and moral systems (Curry, 2016). 



 It is important to note that, although TIT FOR TAT emerged repeatedly victorious, it is not 

necessarily the optimal ‘nice’ strategy. ‘Nice’ strategies are those that begin with cooperative behaviour, 

rather than defection. While nice strategies emerge mathematically superior, ‘nicer’ strategies can be 

more viable depending on strategies used by other members of the population. Indeed, Axelrod used a 

‘forgiving TIT FOR TAT’ strategy, TIT FOR TAT that forgives one defection, to challenge the contenders of 

the first tournament. He discovered that, had this strategy been submitted, it would have won. This is 

because an evolutionary strategy’s success will depend on the other strategies being used in its 

ecosystem; in the first tournament, there were fewer defection strategies and thus, the nicer strategy 

was superior (Dawkins, 2016). The corollary of this is that the more cooperative an overall population, 

the less punishment is required and thus, the more evolutionarily beneficial ‘nicer’ strategies become. 

Reciprocity theory explains the development of cooperation and sociality of species. 

Cooperative strategies, in turn, cohere into moral systems. Thus, for the purposes of generating a 

bottom-up, machine learning algorithm for morality, it seems only logical to begin with reciprocity 

theory as the framework. Simple teaching scenarios can be presented to the algorithm through a game 

theoretical approach, and based on Axelrod’s (and subsequent) research, we will find cooperative 

strategies to prevail throughout the training phase. This allows the algorithm to learn cooperative 

behaviour from the ground up with increasing scenario complexity. Eventually, much like the occurrence 

in humans, the machine learning process will begin to make inferences across scenarios that will act as 

overarching principles to guide decision-making in novel cases once the training phase is complete. 

Further, because it is mathematically bound to be cooperative, and it is training against itself, the 

emergence of a ‘nicer’ strategy akin to the forgiving TIT FOR TAT is likely to emerge rendering the 

algorithm, by default, extremely prosocial. 

 Reciprocity may help to mitigate concerns about conflicts between moral codes and the 

potential for biases, but it begs an important question. How does one bridge the gap between solving a 



cooperative problem, like the Prisoner’s Dilemma, and solving a philosophical moral problem, like the 

trolley problem? Take, for example, the scenario in which a trolley hurtles down a forked track with 5 

people helplessly anchored in its path. With the flip of a switch, the trolley changes course, now 

barreling down on only 1 unfortunate captive. Cooperative game theory concerns some of the following 

considerations: 

1. How great is the benefit from cooperation versus defection? 

2. How likely is the individual to defect? 

3. How likely, if I defect, am I to receive punishment? 

To answer the first question, securing 5 potential sources of cooperation is superior to 1. If, however, 

the 1 person was a friend, you could reasonably expect more cooperative interactions with them than 5 

strangers. The second question, for this dilemma, is less relevant; defection likelihood is virtually nil. 

Consider, however, the ‘footpath’ variation involving the heavy man on a bridge. If your defection fails 

to kill the man, he will almost certainly defect, possibly by trying to throw you onto the track. Finally, in 

the third question, though punishment is improbable, since those defected upon will likely be dead, 

there is still a greater chance of experiencing punishment from the group of 5; should the trolley stop 

after defection was made clear (refusing to pull the lever), there are 5 potential sources of punishment 

rather than 1. Moreover, this can be a measure of success rate. In the case of the ‘footpath’ version, it is 

the estimation of how likely you will be to succeed in killing him. If you fail, severe, presumably even 

fatal punishment becomes likely. These kinds of calculations are equivalent to real-world scenarios for 

self-driving cars. In deciding between colliding with a child or an elderly individual, cooperation 

calculations suggest a greater statistical likelihood of cooperative interactions involving the child, as they 

will live longer. Organisms that secured the most cooperative partners had the greatest levels of fitness. 

Iterated simulations should follow a similar trajectory. Of course, none of these calculations in humans 

occur consciously. Rather, they are molecular changes that breed unconscious emotional shifts. Post hoc 



rationalization occurs that may bear very little resemblance the impulses that spawned it. This fact is 

corroborated by the discrepancy between what people claim they would do in trolley problems, and 

what actions are actually taken in VR trolley simulations (Francis, et al., 2017). 

The development of a bottom-up moral framework helps deal with the problem of subjective 

morality in developing an independent moral algorithm. If the machine is generating the ability to be 

moral from the ground up, it is not necessary to worry about defining and codifying moral rules to be 

obeyed. The machine will recapitulate the evolutionary moral trajectory from simple organisms to 

human infants, and subsequent moral training from human infants to ethical adult agents. While this 

process took billions of years in humans, in machines, we will be able to watch this occur before our 

eyes. In this approach to machine learning, the algorithm will be training against itself and will be 

exposed to millions of game iterations in just days. While training itself is relatively quick, the design 

features necessary to generate a functional algorithm complicates matters. The purpose of the 

algorithm will be such that it can be instantiated into other machines with their own goal-states but 

remain functionally independent. This is important so that the algorithm may still maintain domain 

specificity. Thus, there will then need to be a way for moral decision-making to be sufficiently salient so 

as to compete with (and hopefully, override) these goal-states in much the same way that social 

pressures shape a human conscience. In other words, it is necessary to deal with the problem of 

incentivization. 

II. DEVELOPING A MORAL ALGORITHM WITH MACHINE LEARNING TECHNIQUES 

Digitizing the Conscience: Machine learning continues to improve in its efficacy as collaboration between 

the neuro and computer sciences yield more fruit. One of the most exciting and effective solutions 

emergent from such partnerships is reinforcement learning, a method of machine learning that directly 

mimics the way human brains learn via the dopaminergic system (Sutton & Barto, 2018). The 



dopaminergic system contributes to learning through evaluation of potential reward versus actual 

reward, and then reconfigures synaptic weights accordingly so as to find a more accurate balance 

between the two variables (Glimchar, 2011). The dopaminergic system is more than just a reconciliatory 

mechanism for reward prediction, however; it is also generative. ‘Actual reward’, as measured by the 

network, actually rewards the brain allowing it to be a semi-closed system for reward-based learning. 

The reinforcement effect is bidirectional and multiplicative in that both positively and negatively 

valanced neurochemical triggers can be generated. This is based not only on actual reward but also the 

discrepancy between actual reward and predicted reward, with increased feedback-related negative 

affect as actual reward falls below the predicted (Bismark, Hajcak, Whitworth, & Allen, 2012; Schulz, 

Dayan, & Montague, 1997). Put simply, reinforcement learning both biological and digital do the 

following: 

1. Assign positive value to high reward and negative value to low reward 

2. Generate reward by reducing discrepancy between current state and desired state 

3. Generate reward-value based predictions for available decision options 

4. Calculate the difference between predicted reward and actual reward 

5. Solve for the appropriate reward value and reconfigure connective weighting accordingly 

The difficulty with  reinforcement learning is that itcaptures the current landscape of neural 

connectivity, whether biological or digital and in outcomes of reward (whether positively or negatively 

sourced), strengthens (or weakens) connectivity to all connections that are active at the time of 

reinforcement (Sutton & Barto, 2018). While this helps mitigate some of the issues involving insufficient 

background knowledge, it can lead to misattribution errors and faulty premises upon which further 

calculations are made, which in turn, lead to flawed conclusions. Humans suffer from this problem with 

reinforcement learning as well. For example, suppose a person is extremely hungry but cannot leave the 

office. The only food vendor that is open in the building sells gluten-free products. This individual 



therefore orders a gluten-free meal and after having eaten the meal, finds themselves feeling extremely 

refreshed and invigorated. They make the attribution between gluten-free food and feeling good, rather 

than any of the myriad of other variables that may have caused or contributed to that state. This 

weighted connection between the two variables (gluten-free food and feeling good) becomes the 

strongest variable in its respective networks and thus, requires a large number of contravening trials to 

disconfirm it.  

Machine algorithms hold an advantage over humans in avoiding misattributions for two major 

reasons. First, computers make calculations significantly faster than humans and thus, are simply able to 

generate more trial scenarios in shorter spans of time. Therefore, provided the attribution is indeed 

false, the computer will be able to process more trials (and errors) to sufficiently weaken this 

connection. This is facilitated in part by the domain specificity of computerized algorithms. For example, 

while the human brain has more processing power than a calculator, the calculator will process 6(322 x 

36) faster than a brain. This is because much of the brain’s available processing power (external to 

survival and metabolic processes) is dedicated to inhibiting the irrelevant details. Calculators do not 

have to spend precious processing power suppressing disappointment over a breakup or questions 

about what to cook for dinner. This leads to the second reason for superior attribution power in 

machines: the problem of episodic memory. Episodic memory is what humans use to vividly remember 

events that occurred in their lives, drawing heavily on sensory imagery. The difficulty with episodic 

memory is that it is treated by the brain as a novel ‘trial’ and is reconsolidated. The same connections 

are activated, and the neurons within the network undergo minor chemical changes with each recall, 

which in turn causes and adjustment in the weights of these connections (Suzuki, et al., 2004). Even 

without a new trial and outcome taking place, networks weights are updated. Therefore, our example 

individual need only remember the instance of eating gluten free food, perhaps overemphasizing the 

negative state before the food and positive state after the food in order to create a large reconfiguration 



of attribution. He is now more convinced gluten free food made a radical transformation in his affective 

state, despite having no new information. Computers do not use the mechanisms of episodic memory 

and because of this, their weights will not be updated by recapitulations of the same data.  

The reinforcement outcomes in the machine must serve a greater purpose than merely 

expediting training times and minimizing error rates. If the reinforcement mechanism does not impel 

the machine to actually make ethical decisions, it fails to serve as a moral framework because competing 

goal-states will inevitably take precedence in machines originally developed to accomplish certain aims. 

The problem of incentivization must be resolved by making cooperation highly rewarding. Research 

done on the neuroscience of morality has demonstrated that cooperative behaviour triggers 

dopaminergic reward; more specifically, cooperative behaviour in game theoretical parameters of the 

Prisoner’s Dilemma (Rilling, et al., 2002). If our dopaminergic reward system has been forged by 

evolution to facilitate goal-states of survival and genetic reproduction, why would choosing cooperation 

over defection trigger such a surge in dopaminergic activity? This harks back to Axelrod and Hamilton’s 

findings: even goal-states that are ‘selfish’ in nature are more readily obtained through cooperative 

means. While the output of the machine’s training period is simply a raw reward signal, the data sets for 

training implicitly teach the machine that cooperation is rewarding because it facilitates maximizing its 

own goal-states. Thus, when implemented into a machine designed for potentially conflicting goal-

states, the algorithm offers the learned principle that cooperation will better facilitate individual goal-

state satisfaction overall. Moreover, based on the evidence provided by Axelrod and Hamilton that this 

is indeed the case, the choice of cooperation in an effort to secure selfish goal-states will continue to be 

reinforced, provided that the machine operates within environments of cooperative agents. As a result, 

the module will be able to act as a moral guide based on learned principles much like a human 

conscience. 



Reinforcement learning may provide great promise for bottom-up programming, but Allen 

raises a reasonable objection to bottom-up models specifically on the grounds of machine learning: 

computers can “learn the wrong thing,”(2009, p. 110). After all, humans are the product of bottom-up, 

reinforcement learning and we learn the wrong things almost every day. Unfortunately, it is a reality 

that errors will be learned even in the best of bottom-up systems: after all, even natural selection has 

left us with our retinas on backwards and a choking hazard in our necks. Moreover, even bottom-up AI 

systems have been shown to make errors and misattributions through what have come to be known as 

‘adversarial attacks’. These are instances in which people capitalize on the knowledge of how an 

algorithm works in order to lead it to inappropriate outputs. Moreover, this kind of attack is not limited 

to machines. Human can be similarly manipulated into solidifying inappropriate beliefs or effecting 

inappropriate behaviours based on knowledge of their thinking processes. Adversarial attacks come in 

two varieties: ‘evasion attacks’ and ‘poisoning attacks’. Evasion attacks are those in which a person 

knows an algorithm’s evaluation criteria and thus, uses this information to circumvent it. This is 

relatively simple to accomplish in fixed algorithm but much more difficult to accomplish in a machine 

learning system. This is because the solution to this problem is more data, which a fixed algorithm 

cannot make use of. A machine learning algorithm, on the other hand, is continually collecting more 

data and thus, the evasion issue can be solved through providing another round of accelerated training. 

Poisoning attacks appear to be more what Allen has in mind when discussing his concern with 

machines learning the wrong thing. Poisoning attacks are those in which an individual intentionally 

undermines the training process by flooding the trials with samples carefully tailored to skew the 

weights in a certain direction. In fact, though the system is ‘bottom-up’, there is an element of top-down 

bias towards a specific outcome being injected into the training process. Therefore, rather than the 



algorithm making false attributions, the misattributions can be seen as a result of human error.1 While 

theoretically, the objection with respect to flawed learning makes good sense, the real-world examples 

of bottom-up, reinforcement learning machines appear to suggest this issue to be negligible. AlphaGo 

Zero is not the only machine that experienced significant improvements to effectiveness when 

unshackled from human error. Given an appropriate reinforcement set, machines will become far more 

accurate by sifting through raw data than it will by trying to imitate humans. That is not to say machines 

will never make errors, but rather, it is to say that as long as they make fewer errors than we do, this 

ought not to be a concern. After all, humans are error prone and yet we regularly trust their judgement. 

This ought to be extended to machines as well, especially if they prove themselves more competent 

than us. 

Emotionality Sans Endocrinology: There is a school of thought in philosophy that supposes emotions to 

be a crippling force in making moral decisions and Spock-like creatures as paragons of moral arbitration. 

It is typically populated by utilitarians, and indeed, there is evidence to suggest these thinkers are less 

emotionally driven in moral decision-making. Harvard scholar Joshua Greene, one of the world’s leading 

experts on the neuroscience of morality, has found a link between philosophical morality perspectives 

and activation of anticorrelated regions involving reasoning and emotional response. People framing the 

trolley problem as utilitarians show greater activation of the “rational, cognitive” dorsolateral prefrontal 

cortex (dlPFC) (Greene, Somerville, Nystrom, Darley, & Cohen, 2001). As the difficulty of the moral 

dilemmas increases, so too does the activation of emotional centers at the cost of dlPFC activation; as 

such utilitarian decision-making drops off (Greene, Nystrom, Engell, Darley, & Cohen, 2004). Emotional 

decision-making is at some point, inevitable and necessary for morality to prevent moral perversions. No 

matter how one may anachronistically rationalize the beneficial scientific outcomes generated by the 

 
1 ‘Human Error’ in this case is not to be construed as ‘unintentional’ but rather, an error in the cause and effect 
determination mechanism caused by a human. 



mountain of cadavers proffered by Josef Mengele, no moral agent recognizable to humankind would 

suggest recreating this scenario. In considering such situations, it appears more plausible that emotions 

act as the bottom-up, driving force for principle-generation. When no current principle reconciles our 

“gut-feelings”, we rely more on bottom-up, emotional decision-making that involves empathy. 

 There is a question worth considering at this point: what benefit to information processing are 

emotions providing? In his work with lesioned patients, Antonio Damasio discovered that emotional 

affect is necessary for decision-making. Patients who suffer trauma to emotional centers like the 

ventromedial prefrontal cortex (vmPFC) or amygdala, for example, fail to make appropriate decisions (or 

any decisions at all) (Damasio, 2004). Indeed, virtually all disorders of decision-making, such as abulia, 

present with flattened affect and apathy. This makes perfect sense, for without any mechanism by 

which to make some data points more salient than others, one could continue processing information 

ad infinitum without ever determining if any of it is relevant to the task at hand. Emotions facilitate the 

generation of abstractions, collections of salient and related variables, that can act as heuristics, making 

decision-making possible. Moreover, the expression of emotions allows salience to be conveyed in 

addition to being processed. Evolution has provided emotional or endocrinological mechanisms to take 

expansive sets of inputs, filter the irrelevant information and transmit this information quickly 

throughout the nervous system so that it can be readily recapitulated and utilized; this is, in effect, the 

exact role of neurotransmitters.  

 New deep learning techniques called ‘autoencoders’ have been developed to accomplish 

specifically such a role. The basic idea of a standard autoencoder is that it takes a set of input nodes and 

tries to convert the configuration into a sufficiently low-resolution version of the information. It seeks to 

filter out information from the inputs through an ‘encoder’ to generate increasingly low-resolution 

versions so that this information might pass through a bottleneck consisting of a significantly reduced 

number of nodes than the original input set. From the compression state of the bottleneck, the 



information passes through a ‘decoder’ which aims to recreate the information lost in the encoder 

phase and submit it to an output. The better the output expresses the input, the more effective the 

autoencoder. The benefit of this process is that it allows for the generation of compressed versions of a 

data set that capture only the most salient information necessary for use.  

 For example, the glucocorticoid hormones involved in the stress response, offer a relatively 

simple illustration of the analogous role in biological organisms. Suppose a person is walking through the 

forest and hears a loud growling coming from directly behind them. Virtually all of the input information 

being received in that moment become impediments to the goal of decision-making. Were this 

individual to spend precious seconds noticing the colour contrast in the leaves or the coolness of the 

breeze, they likely would not have lived to propagate as many offspring. Evolution has selected for the 

ability to filter out stimuli from a large set of inputs and compress the data to the most relevant, salient 

features. A low-resolution version of the inputs, cortisol, can then move quickly and effectively 

throughout the body to convey the pertinent message of ‘danger’ and upon decoding, contextual 

information provides cues as to how movement ought to occur and what steps are to be taken. In 

reality, many molecules and their location of secretion and action are what generate the sensation of 

emotion and encompass all of the analogous components of an autoencoder, complete with input 

system (activated neural network), encoders (pre-synaptic neuron locations), bottleneck (molecules 

released), decoder (post-synaptic neuron locations) and output set. Indeed, newer studies show that 

this configuration is more plausible than fixed categories of emotion (Skerry & Saxe, 2015; Dubois & 

Adolphs, 2015), making bottom-up, heuristic learning the more plausible mechanism for emotional 

development. Moreover, autoencoders have already been used to generate representations of 

molecules based on their predicted effects (Gómez-Bombarelli, et al., 2018), suggesting that 

neurotransmitters and their outcomes could be accounted for by machines. This is of particular 

relevance in addressing the problem of biological parallels. 



Uploading Empathy: Empathic machines, at first glance, appear wildly unintuitive. After all, machines do 

not have biological substrata, so how could they ever truly embody human states and understand our 

perspective? While this might be true, it is equally true to say that no human could ever truly embody 

the state of another human, because for all their biological similarities, experience of events will likely 

differ significantly. If, however, empathy is the ability to vicariously experience the emotional state of 

another, it is possible that machines may end up superior to humans in this respect, provided that an 

appropriate surrogate for emotional experience (like the one listed above) is present. This boils down to 

the different methods of learning in machines versus humans. 

 Empathy is often framed as pure, adulterated emotional response when in reality, there are 

both cognitive and emotional components that are equally necessary. In fact, when the pain is 

emotional rather than physiological, there is more activation of the aforementioned reasoning center, 

the dlPFC (Sapolsky, 2017). In our own brain, bottom-up processes regularly feed information to 

emotional centers but when empathizing, we must do a top-down reconstruction of the abstract 

variables of another in order to piece together the emotional picture. This is a cognitively heavy task and 

as such, not only will there be a great deal of signal loss in attempting to replicate the emotions of 

others, there is a problem of anticorrelation between the dlPFC and the more emotionally receptive 

vmPFC. Emotional activation must therefore be weakened in order to spare the cognitive resources of 

unravelling the emotional state of another (Sapolsky, 2017). As humans practice empathy, they are 

always experiencing some degree of emotional signal loss of the other person. 

 Unsupervised machine learning, on the other hand, is done with the algorithm being trained 

against itself. In the Prisoner’s Dilemma scenarios, it is both player 1 and player 2. Therefore, because it 

does not need to waste computing power on deciphering external experience in emotional contexts, its 

resources are readily available for use in ‘emotional’ networks. Thus, it would be trained on millions of 

observations in a particular context, each time learning that its opponent’s emotional status is equally 



valuable to its own because they are one in the same. When it does eventually finish training against 

itself and move on to people, this principle is still being used to calculate the decision to be made when 

other parties are involved. The weight given to the values and emotional states of others, could, for this 

reason, be stronger than that given by the average human. 

CONCLUSION 

The model outlined above, while rudimentary, might suggest fertile ground in the artificial instantiation 

of moral and ethical frameworks for intelligent machines. Such a paradigm is meant to offer solutions 

available to us right now that could stand to improve the overall wellbeing of humans. The sooner such 

a project begins realization, the sooner the training processes can begin expanding and the more 

effective such algorithms can become. Moreover, beginning the training process now can help prevent 

humans from being blindsided by the inevitable discovery of intelligent machines that have been 

programmed in the absence of a moral framework. Inoculation against such an outcome may prevent 

what could otherwise be a disaster for both our species and our planet. 

Bibliography 
Adams, T. G., Stewart, P. A., & Blanchar, J. C. (2014). Disgust and the Politics of Sex: Exposure to a 

Disgusting Odorant Increases Politically Conservative Views on Sex and Decreases Support for 

Gay Marriage. PLoS ONE, e95572. Retrieved from 

https://doi.org/10.1371/journal.pone.0095572 

Aleman, A., Böcker, K. B., Hijman, R., Haan, E. H., & Kahn, R. S. (2003). Cognitive basis of hallucinations in 

schizophrenia: role of top-down information processing. Schizophrenia Research, 64(2-3), 175-

185. 

Allen, C., Varner, G., & Zinser, J. (2000). Prolegomena to any future artificial moral agent. Journal of 

Experimental & Theoretical Artificial Intelligence, 12(3), 251-261. 

Axelrod, R., & Hamilton, W. D. (1981). The Evolution of Cooperation. Science, 211(4489), 1390-1396. 

Bismark, A. W., Hajcak, G., Whitworth, N. M., & Allen, J. J. (2012). The role of outcome expectations in 

the generation of the feedback-related negativity. Psychophysiology, 50(2), 125-133. 

Campbell, J. (2001). Rationality, Meaning and the Analysis of Delusion. Philosophy, Psychiatry, & 

Physiology, 8(2-3), 89-100. 



Curry, O. S. (2016). Morality as Cooperation: A Problem Centered Approach. In T. K. Shackleford, & R. D. 

Hansen, The Evolution of Morality (pp. 22-51). Springer. 

Damasio, A. (2004). Decartes' Error: Emotion, Reason, and the Human Brain. New York: Penguin House. 

Dawkins, R. (2016). The Selfish Gene (40th Anniversary ed.). Oxford: Oxford University Press. 

Dubois, J., & Adolphs, R. (2015). Neuropsychology: How Many Emotions Are There? Current Biology, 

25(15), 669-672. 

Francis, K. B., Terbeck, S., Briazu, R. A., Haines, A., Gummerum, M., Ganis, G., & Howard, I. S. (2017). 

Simulating Moral Actions: An Investigation of Personal Force in Virtual Moral Dilemmas. 

Scientific Reports, 13954. 

Gaertner, S. L., & Dovidio, J. F. (2000). Reducing Intergroup Bias. New York: Routledge. 

Gailliot, M. T., Baumeister, R. F., DeWall, C. N., Maner, J. K., Plant, E. A., Tice, D. M., & Brewer, L. E. 

(2007). Self-Control Relies on Glucose as a Limited Energy Source: Willpower Is More Than a 

Metaphor. Journal of Personality and Social Psychology, 92(2), 325-336. 

Glimchar, P. W. (2011). Understanding dopamine reinforcement learning: The dopamine reward 

prediction error hypothesis. Proceedings in the National Academy of Sciences, 15647-15654. 

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M., Sánchez-Lengeling, B., 

Sheberla, D., . . . Aspuru-Guzik, A. (2018). Automatic Chemical Design Using a Data-Driven 

Continuous Representation of Molecules. ACS Central Science, 4(2), 268-276. 

Greene, J. D., Somerville, R. B., Nystrom, L. E., Darley, J. M., & Cohen, J. D. (2001). An fMRI Investigation 

of Emotional Engagement in Moral Judgement. Science, 2105(293), 2105-2108. 

Greene, J., Nystrom, L., Engell, A., Darley, J., & Cohen, J. (2004). The neural bases of cognitive conflict 

and control in moral judgement. Neuron, 44(2), 389-400. 

Haidt, J. (1995). The Emotional Dog and Its Rational Tail: A Social Intuitionist Approach to Moral 

Judgement. Psychological Review(108), 814-834. 

Hirstein, W. (2005). Brain Fiction: Self-Deception and the Riddle of Confabulation. Masschusetts: The MIT 

Press. 

Kahneman, D. (2011). Thinking, Fast and Slow. Anchor Canada. 

Kasparov, G. (2019, February 19). Making Sense: The Putin Question (with Garry Kasparov). (S. Harris, 

Interviewer) 

Knapton, S. (2017, October 18). AlphaGo Zero: Google DeepMind supercomputer learns 3000 years of 

human knowledge in 40 days". The Telegraph. 

Li, W., Mai, X., & Liu, C. (2014). The default mode network and social understanding of others: what do 

brain connectivity studies tell us. Front. Hum. Neurosci., 24. 

doi:https://doi.org/10.3389/fnhum.2014.00074 

Mitchell, M., & Forrest, S. (1994). Genetic algorithms and artificial life. Artificial Life, 1(3), 267-289. 



Popper, K. (1959). The Logic of Scientific Discovery (2 ed.). London: Routledge. 

Rilling, J. K., Gutman, D. A., Zeh, T. R., Pagnoni, G., Berns, G. S., & Kilts, C. D. (2002). A Neural Basis for 

Social Cooperation. Neuron, 35(2), 395-405. 

Rosch, E. (1999). Principles of Categorization. In E. Margolis, & S. Laurence (Eds.), Concepts: Core 

Readings (pp. 189-207). Cambridge, Massachusetts: The MIT Press. 

Sapolsky, R. M. (2017). Behave: The Biology of Humans at Our Best and Worst. New York: Penguin 

Books. 

Schulz, W., Dayan, P., & Montague, P. R. (1997). A Neural Substrate of Prediction and Reward. Science, 

275(5306), 1593-1599. 

Skerry, A., & Saxe, R. (2015). Neural representations of emotion are organized around abstract event 

features. Current Biology, 25(15), 1945-1954. 

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction (Second ed.). Cambridge, 

Massachusetts: The MIT Press. 

Suzuki, A., Josselyn, S. A., Frankland, P. W., Masushige, S., Silva, A. J., & Kida, S. (2004). Memory 

Reconsolidation and Extinction Have Distinct Temporal and Biochemical Signatures. The Journal 

of Neuroscience, 24(20), 4787-4795. 

Tajfel, H., & Turner, J. (2004). An Integrative Theory of Intergroup Conflict. In M. J. Hatch, & M. Schultz, 

Organizational Identity (pp. 56-64). Oxford: Oxford University Press. 

Wallach, W., & Allen, C. (2009). Moral Machines: Teaching Robots Right from Wrong. New York: Oxford 

University Press. 

 

 

 

 

 

 

 

 

 

 


	2_Research Paper Instructions 2019-20.pdf
	2_A_Morality_Module_for_Machines.pdf

